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Short Communication

A note on the use of the standard normal homogeneity test
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ABSTRACT: Homogenization methods are developed to reduce the impact of non-climatic factors on climate series.
Martı́nex et al. (2009), (International Journal of Climatology , Doi 10.1002/joc.1884) applied a set of homogenization
procedures to available Spanish temperature series. In this report, we address critical issues of that paper concerning a
specific property of the standard normal homogeneity test and the application scheme of the homogenization tests. We
conclude with some important recommendations on the application of homogenization methodologies. Copyright  2010
Royal Meteorological Society
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Martı́nez et al. (2009) recently published an article on
daily maximum and minimum temperature (Tmax, Tmin)
and diurnal temperature range (DTR) recorded at 37
meteorological stations in Catalonia (NE Spain) cov-
ering the period 1975–2004. After a reliable quality
control procedure, they carried out a set of four differ-
ent homogeneity tests: (1) standard normal homogeneity
test (SNHT; Alexandersson, 1986; Alexandersson and
Moberg, 1997a), (2) Buishand range (Buishand, 1982),
(3) Pettitt test (Pettitt, 1979) and (4) Von Neumann ratio
test (Von Neumann, 1941). The authors did not correct
series but decided to reject them in case of inhomogeneity
detection. In the description of the homogenization pro-
cedure, there are a few misleading points that we would
like to discuss in this short comment.

The thorough understanding of the behaviour of homo-
geneity tests and their correct application to climatic time
series preserve the climatic signal and eliminate or reduce
the influence of non-climatic factors. The removal of false
detected inhomogeneities and the acceptance of inhomo-
geneous series affect each subsequent analysis (e.g. trend
assessments, extreme analysis). Therefore, it is of major
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importance that homogenization procedures are carefully
applied. Moreover, as recommended by Aguilar et al.
(2003), a complete description of the stations (names,
code and exact location) should be provided.

Martı́nez et al. (2009) state that SNHT detects breaks
more easily at the beginning and the end of the temper-
ature series, whereas the Buishand range and the Pettitt
tests are more sensitive to breaks located in the middle of
the series.

In the following paragraphs, a brief description of
SNHT behaviour is provided showing that SNHT per-
formance decays for breaks located at the beginning and
the end of series.

There are several studies that have investigated the
strengths and weakness of break detection algorithms.
For instance, Alexandersson and Moberg (1997a), since
because the exact distribution of the test statistic under
the null hypothesis is unknown, reported on critical levels
of the SNHT statistic for series with a number of values
from 10 to 250. Khaliq and Ouarda (2007) extended these
critical values from 10 to 50 000. Furthermore, Alexan-
dersson and Moberg (1997b) avoided the application of
SNHT to segments with a length less than ten values.
Ducré-Robitaille et al. (2003) analysed the behaviour
of eight techniques for break detection with simulated
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Figure 1. Results from the simulation study with a shift of the mean between 0.1σ and 1.5σ . The grey-dashed (solid) line shows the performance
of SNHT with an inhomogeneity located at the fifth (tenth) value. The black-dashed line shows the number of detected break points in the 1000

tests with an inhomogeneity located at the 15th (50th) value.

annual series. They found that SNHT false break detec-
tion (a set of homogeneous series was tested) increases at
the beginning and the end of the series even if the total
number of false detection is quite low (8.6%). Adding
artificial shifts (from 0.25 to 2 °C) to their set of simu-
lated series they found poor performances of SNHT with
breaks (characterized by a magnitude less than 0.75 °C)
located at the beginning of the series. DeGaetano (2006)
found, in his analysis of break detection methods, a sim-
ilar behaviour of SNHT in the case of false detected
breaks (using 1000 homogeneous series). He reported
also a sharp decline in the number of identified disconti-
nuities (a single shift was added to their simulated series)
in series shorter than 21 years.

We carried out a simulation of 1000 series (with
a length of 100 years, Figure 1) and found agreement
with Ducré-Robitaille et al. (2003). An artificial shift
was added after 5, 10, 15 and 50 values, with a
magnitude between 0.1σ and 1.5σ (where sigma refers
to the candidate series). Figure 1 shows the decreasing
performance of SNHT in the detections of break points
(with a tolerance of 1 year) close to the beginning
of series. This is evident especially for breaks located
at the fifth and tenth position with a magnitude less
than 1.2σ . All the previous studies point out that the
detection of inhomogeneities (break points) either located
at the beginning (end) of a series or based on a small
amount of values is difficult and should be confirmed by
metadata.

Martı́nez et al. (2009) also provide a description of
homogenization results but fail to explain how the SNHT
was applied. We assume that their series were tested
in an absolute way, that is, without reference series
and without calculating difference series (which is a
standard procedure in homogenizing data series; e.g.
Peterson and Easterling, 1994; Aguilar et al., 2003).

This assumption is confirmed by their results, that is,
most of the detected breaks are in 1984–1986 and
1992–1994, and by the fact that they did not consider
data before 1975 due to the well-known slope change
in temperature record that could mask other lacks of
homogeneity (Section 2). However, this approach is not
able to distinguish a climate shift from an inhomo-
geneity. Moreover, it leads to the acceptance of series
that could be affected by real inhomogeneity. Indeed,
some of the temperature series in their analysis were
also used by Prohom et al. (2008); applying three dif-
ferent homogenization approaches, they showed that ten
series out of 16 have showed at least one break point
within the same period (1975–2007), all of them con-
firmed by the available metadata (i.e. relocation and/or
change from manual stations to automatic weather sta-
tions).

SNHT (and other similar techniques) should be only
applied to a standardized difference (in the case of tem-
perature) series (Y -R, where Y denotes the so-called
candidate and R the reference series) as recommended
by Aguilar et al. (2003). This procedure can be carried
out using either a single reference series (e.g. Peterson
and Easterling, 1994; Alexandersson and Moberg, 1997a,
1997b) or multiple reference series using highly corre-
lated series (e.g. Caussinus and Mestre, 2004). Even if
these methods are based on reference series, breaks due to
common network history (e.g. simultaneous introduction
of new instruments) are not easily detectable. One way
to get over this situation is to use series from different
meteorological networks. This increases the probability
to detect breaks affecting the entire network.

Martı́nez et al. (2009) attributed the identified breaks
to two volcanic eruptions (El Chichón, Mexico, 1982;
Mount Pinatubo, Philippines, 1991). As stated by Aguilar

Copyright  2010 Royal Meteorological Society Int. J. Climatol. (2010)



STANDARD NORMAL HOMOGENEITY TEST

et al. (2003), homogenization aims to identify and elim-
inate (or reduce) the effects on non-climatic factors such
as changes in instruments, observing practices, station
relocations and station environments. Natural phenom-
ena such as volcanic eruptions are not included in this
list because they belong to the set of ‘climatic factors’,
which can cause change points in a series, that should not
be considered as inhomogeneities. Therefore, we point to
the fact that a change point is the effect of one or more
factors (climatic and non-climatic) on a series, whereas
a break point or inhomogeneity is a change point caused
by non-climatic factors.

In order to identify non-artificial change points affect-
ing a series (e.g. piecewise trend; Seidel and Lan-
zante, 2004), techniques developed for this specific issue
(e.g. Bai and Perron, 2003) must be applied after the
homogenization process.

To summarize, the homogenization of climatic series
is a difficult task that must be performed carefully,
especially when metadata is not available. The aim
of homogenization is the removal of non-climatic fac-
tors, whereas the climatic signal must be preserved.
SNHT, as other techniques, must be applied compar-
ing series with a reference to get reliable break points.
Moreover, the limits of this test should be taken into
account during the homogenization procedure. An incor-
rect application of homogenization procedures to cli-
mate data could subsequently lead to unreliable climate
analysis. The comparison of detected break points by
several tests is a good strategy, especially when meta-
data is not available. It gives robust results avoiding
overestimation and correction of false inhomogeneities.
Furthermore, methods for correcting daily temperature
series (e.g. Della-Marta and Wanner, 2006) have been
available for a couple of years and should be used
instead of rejecting series affected by too many break
points.

Unfortunately, Martı́nez et al. (2009) did not provide
us data to calculate the influence of their approach on
trend analysis.
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