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Abstract This paper presents a comparison of principal

component (PC) regression and regularized expectation

maximization (RegEM) to reconstruct European summer

and winter surface air temperature over the past millen-

nium. Reconstruction is performed within a surrogate

climate using the National Center for Atmospheric

Research (NCAR) Climate System Model (CSM) 1.4 and

the climate model ECHO-G 4, assuming different white

and red noise scenarios to define the distortion of pseu-

doproxy series. We show how sensitivity tests lead to

valuable ‘‘a priori’’ information that provides a basis for

improving real world proxy reconstructions. Our results

emphasize the need to carefully test and evaluate recon-

struction techniques with respect to the temporal resolution

and the spatial scale they are applied to. Furthermore, we

demonstrate that uncertainties inherent to the predictand

and predictor data have to be more rigorously taken into

account. The comparison of the two statistical techniques,

in the specific experimental setting presented here, indi-

cates that more skilful results are achieved with RegEM as

low frequency variability is better preserved. We further

detect seasonal differences in reconstruction skill for the

continental scale, as e.g. the target temperature average is

more adequately reconstructed for summer than for winter.

For the specific predictor network given in this paper, both

techniques underestimate the target temperature variations

to an increasing extent as more noise is added to the signal,

albeit RegEM less than with PC regression. We conclude

that climate field reconstruction techniques can be

improved and need to be further optimized in future

applications.
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1 Introduction

Knowledge of temperature amplitudes is of utmost impor-

tance in gaining a better understanding of past temperature

evolution and change. Reconstruction of past temperature

variability based on paleoclimatic data can provide insights

into the interpretation of the role of climatic forcings. Many

existing reconstructions place the twentieth century warm-

ing at continental to global scale into a broader context

(Mann et al. 1998, 1999, 2005; Esper et al. 2002; Luterb-

acher et al. 2004, 2007; Mann and Rutherford 2002;

Xoplaki et al. 2005; Rutherford et al. 2005; Casty et al.

2005a, 2007; Guiot et al. 2005; Moberg et al. 2005; Jansen

et al. 2007). However these reconstructions have various

limitations, primarily related to the availability of proxy

data and their quality. It is a methodological challenge to

filter out the climatic signal from a range of different proxy

archives, given the short instrumental period for calibration

and the increasing lack of predictors back in time.
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Reconstruction is generally approached in two ways. One

possibility is to reconstruct the average, i.e. a single time

series over a specific time period, e.g. the Northern Hemi-

sphere average over the past millennium. The average series

is reconstructed by making a composite of multiple proxy

series, centered and scaled according to the target, i.e.

composite-plus-scaling (CPS) (see Jones and Mann 2004;

Esper et al. 2005). The other possibility is to focus on the

whole climatic field of interest. In this case climate field

reconstruction (CFR) techniques provide temporal and

spatial information (Jones and Mann 2004, and references

therein). The CFR approach provides a distinct advantage

over averaged climate reconstructions, for instance, when

information on the spatial response to external forcing (e.g.

volcanic, solar) is sought (e.g. Shindell et al. 2001, 2003,

2004; Waple et al. 2002; Fischer et al. 2007). The results of

both approaches, CFR and CPS, have led to some contro-

versy over temperature amplitudes, raising questions about

associated uncertainties, and the robustness and skill of the

various reconstructions, as well as the influence of trends,

and the length and climatology of the calibration period

(von Storch et al. 2004; Buerger and Cubasch 2005; Thejll

and Schmith 2005; von Storch et al. 2008; Wahl and Am-

mann 2007; Moberg et al. 2008). Recent studies provide

some answers to these questions (Wahl and Ammann 2007)

and introduce improved methodologies for reconstructions,

e.g. the application of different parameter estimation tech-

niques (Schneider 2001; Hegerl et al. 2006), the use of

wavelet analysis (Moberg et al. 2005) or state space models

(Lee et al. 2007). In this contribution we concentrate on

CFR techniques.

Principal component (PC) regression is the classical

method used to reconstruct past European climate field

information and has been widely applied (Briffa et al.

1987; Cook et al. 1994; Luterbacher et al. 2004; Casty et al.

2005b, 2007; Xoplaki et al. 2005; Pauling et al. 2006).

With PC regression, CFR is commonly performed under

the assumption that no errors are inherent to the predictor

data, and regression coefficient estimates are achieved

using ordinary least squares (OLS). However, if noise is

inherent to the predictor data, these estimates are nega-

tively biased towards an underestimation that results in loss

of variance (Lee et al. 2007). Several authors (Hegerl et al.

2006; Mann et al. 2005, 2007; Rutherford et al. 2005;

Brohan et al. 2006; Esper et al. 2007; Lee et al. 2007; Li

et al. 2007) have recently discussed the necessity of taking

into account not only the uncertainties of the statistical

model, i.e. the residuals, but also the errors inherent to the

predictand and predictor data:

Yþ einstr ¼ BðXþ eproxyÞ þ e ð1Þ

where e are the residuals, einstr the errors associated with

the instrumental measurements, i.e. the predictand and

eproxy the errors associated with the predictors. Thus the

methodological problems can be partly solved by better

incorporating the different uncertainties in the statistical

reconstruction models. Studies by Schneider (2001), Mann

et al. (2005, 2007) and Rutherford et al. (2005) have

proved the capability of the Regularized Expectation

Maximization (RegEM) algorithm to more accurately

reconstruct past temperature variations. One reason for this

is that RegEM integrates eproxy in the reconstruction tech-

nique, as ill-posed problems are regularized. Mann et al

(2007) found truncated total least squares (TTLS) to be a

particularly successful option for undertaking the regulari-

zation. RegEM with TTLS is used here as proposed by

Mann et al. (2007) and following the instructions therein.

Some of the studies mentioned above found differences

between the results obtained by using PC regression, on the

one hand, and those achieved by means of the more

sophisticated RegEM approach, on the other. However,

these studies are limited to the hemispheric to global scale

and, mainly, to annual resolution (Rutherford et al. 2005;

Mann et al. 2007; Lee et al. 2007). One might expect to

obtain different results when applying these techniques at a

smaller spatial scale, such as Europe, and considering

seasonal, rather than annual, data. In this study we there-

fore examine the sensitivity of the reconstruction skill at

the continental scale, with seasonally resolved synthetic

proxy data, i.e. proxies derived from climate model data.

We use data from two simulations—one generated by the

National Center for Atmospheric Research (NCAR) Cli-

mate System Model (CSM) 1.4 (Ammann et al. 2007), and

the other generated by ECHO-G 4, which consists of the

atmosphere and ocean general circulation models (GCM)

ECHAM4 and HOPE-G (González-Rouco et al. 2006).

Both simulations are likely to provide realistic opportuni-

ties for testing CFR approaches (Mann et al. 2005, 2007;

von Storch et al. 2004; González-Rouco et al. 2006; Lee

et al. 2007). Utilizing climate model data in a systematic

experiment setup to attempt to reconstruct simulated past

temperatures helps to understand the two techniques better.

This would be less easily undertaken with real world

multiproxy data as input, due to their heterogeneous nature

and limited availability. The evaluation of CFR techniques

is an important step in the process of identifying methodo-

logical deficits and limitations, providing ‘‘a priori’’

knowledge about the performance of the methodologies.

Testing the techniques is therefore a good preparation for

the next step: the improvement of reconstruction using real

world proxy data. Apart from the choice of the recon-

struction technique, there are several other factors limiting

the skill of reconstructions of past climate variability, e.g.

the varying number and spatial distribution of proxies over

time (Pauling et al. 2003; Kuettel et al. 2007; Mann et al.

2007). However, here we focus on three things: on the

N. Riedwyl et al.: Comparison of climate field reconstruction techniques

123



dependence of reconstruction skill on a specific predictor

network, comparable in size and spatial distribution to a

millennial European real world network, on the two tech-

niques applied, and on the quality of the predictor data. We

evaluate RegEM (Schneider 2001; Rutherford et al. 2005;

Mann et al. 2007) for European summer and winter tem-

peratures over the past millennium. In this study, RegEM is

for the first time applied to spatial scales smaller than the

hemispheric. Furthermore, we compare RegEM to PC

regression, the basic multivariate regression model applied

at the European scale, e.g. in Luterbacher et al. (2004,

2007), Casty et al. (2005b, 2007) and Xoplaki et al. (2005).

In Sect. 2 we describe the NCAR CSM 1.4 and ECHO-G 4

climate model data and the experimental setting. Then we

introduce the two CFR techniques and the criteria for

comparison. In Sect. 3 we present the results. We begin by

looking at the European average temperatures and diag-

nosing the skill. Then, we evaluate the spatial skill. The

results are compared and discussed in Sect. 4, followed by

a summary of our principal conclusions and a glance at

future research in Sect. 5.

2 Data and methods

We test the performance of PC regression and RegEM in

the surrogate climate of the two global coupled models

NCAR CSM 1.4 and the ECHO-G 4. The use of climate

model data permits an evaluation of the skill of the Euro-

pean reconstructions over a time period of 1,000 years and

not only during the twentieth century verification period, as

would be the case in reality. The brevity of the real world

instrumental period for calibration makes it very difficult to

compare techniques and assess reliability of their perfor-

mance (e.g. Lee et al. 2007). Moreover, different virtual

scenarios can be created by altering the input data of the

statistical models, in order to better understand their per-

formance and their sensitivities.

2.1 Simulated European surface air temperature data

NCAR CSM 1.4 (Ammann et al. 2007) and ECHO-G 4

(González-Rouco et al. 2006) are both global coupled

models. NCAR CSM 1.4 has a grid resolution of

3.75� 9 3.75� and is forced over the period 850–1999 AD.

ECHO-G 4 has a grid resolution of 3.75� 9 3.75� for the

atmospheric component and 2.8� 9 2.8� at low latitudes

for the ocean, and is forced over 1000–1990 AD. NCAR

CSM 1.4 forcings included are observation-based time

histories of solar irradiance, aerosol loadings from explo-

sive volcanism, greenhouse gases and anthropogenic

sulfate aerosols (Ammann et al. 2007). Orbital parameters

and land use changes are not included as forcings in NCAR

CSM 1.4. Any potential long-term drift is removed by

subtracting a millennial-scale spline fit for individual

months of the annual cycle, obtained from the control

integration, at each gridpoint (Ammann et al. 2007).

ECHO-G 4 forcing includes natural (solar irradiance,

radiative effects of stratospheric volcanic aerosols) and

anthropogenic (greenhouse gas concentrations) estimates

(González-Rouco et al. 2006) of past millennial external

forcings. A flux adjustment constant in time and zero

spatial average are used to inhibit climate drift (González-

Rouco et al. 2006). The NCAR CSM 1.4 simulation used

here is the one with ‘medium’ solar irradiance scaling

(0.25% Maunder Minimum reduction) in the terminology

of Ammann et al (2007). The ECHO-G 4 simulation (using

0.3% Maunder Minimum reduction) is the one sometimes

known as ‘Erik 2’ (González-Rouco et al. 2006), which has

cooler initial conditions than the older ‘Erik 1’ simulation

used in several previous pseudoproxy studies.

The predictand in the reconstruction experiments is the

simulated gridded surface air temperature field, generated

by the NCAR CSM 1.4 and the ECHO-G 4 simulations

respectively. To represent Europe we selected the area

52.5� W–71.25� E and 28.125� N–76.875� N of the global

model run, which gives a rather coarse picture of the

European area, namely 476 gridboxes (land and sea).

Gridded model surface temperature information with a

higher spatial resolution is not available for the past

millennium. Nevertheless, testing and comparing CFR

techniques in this experimental setting is reasonable. The

original NCAR CSM 1.4 and ECHO-G 4 simulation tem-

perature data are monthly resolved. We have calculated

seasonal mean temperatures for summer (JJA) and winter

(DJF) starting in December 1000 AD and ending in August

1990 AD. Some analyses are made on a gridpoint basis,

while others are made for the (latitude weighted) European

average temperature.

2.2 The Pseudoproxy data

The predictor data used for this study corresponds to

NCAR CSM 1.4 and ECHO-G 4 model gridpoints closest

to real world proxy locations in Europe. As the proxies are

derived from the model data, we call them synthetic

proxies or ‘‘pseudoproxies’’ (Mann and Rutherford 2002;

Rutherford et al. 2005; von Storch et al. 2004, 2006). The

pseudoproxy locations are chosen according to published

data (Mann et al. 1999; Briffa et al. 2001; Klimenko et al.

2001; Proctor et al. 2002; Shabalova and van Engelen

2003; Luterbacher et al. 2004, 2007; Casty et al. 2005b;

Rutherford et al. 2005; Guiot et al. 2005; Mangini et al.

2005) and some other data that will be potentially available

from current research projects (NCCR Climate and

MILLENNIUM). The real world proxy data referred to
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consists of 1,000 year long series and some series covering

several centuries. Additionally, a few gridpoints refer to

shorter real world series, which are primarily used to

optimize the spatial distribution of the network towards

Eastern and Southern Europe. We argue that if the tech-

niques already fail using input data covering the full length

of 1,000 years, they certainly can be expected to do so, if

the number and spatial distribution are reduced and change

through time. Thus the pseudoproxies derived and used in

this paper are idealized, as we assume them all to be

constantly available over the full time period of

1,000 years (e.g. as been done in Mann et al. (2007)).

Keeping the spatial distribution and the number of proxies

constant over time allows us to focus on the actual variable

of interest, the performance of the two different CFR

techniques. We limit ourselves to considering mainly one

network, equal for both seasons and without changing

availability over time. The predictor network (Fig. 1)

consists of 30 gridpoints and is seen as a reasonable

selection of a predictor network for a 1,000 year European

temperature reconstruction. Additional testing has been

made with a smaller pseudoproxy network, which consists

of 12 gridpoints (not shown). These pseudoproxies refer to

real world proxy series available to reconstruct the late

Maunder Minimum (Kuettel et al. 2007). The conclusions

drawn are conditional upon the specific network configu-

ration considered. Accordingly, this study can not apply in

complete generality. Moreover, we restrict our analysis

based on the assumption that our pseudoproxies have

seasonal resolution and do not combine temporally low and

high resolved climate proxies such as those for instance in

Moberg et al. (2005). Generally, the quantity and, even

more, the spatial distribution of the proxy information

plays a crucial role in determining the reconstruction skill.

Even a single point, if optimally situated, has an impact on

the reconstruction result, and thus improves the skill (Ku-

ettel et al. 2007). However, the focus of this study lies more

on the performance of the two reconstruction techniques as

such.

We use different scenarios for errors in the local pseu-

doproxy series, i.e. the predictors are characterized by the

addition of red or white noise with varying signal to noise

ratios (SNR) to the simulated temperature signal. Noise is

added as indicated e.g. in Mann and Rutherford (2002) and

von Storch et al. (2004), with the difference that the

pseudoproxies here are constructed based on seasonal

means, correlations etc., i.e. separately for summer and

winter, taking into account different responses of real-

world proxy data to warm and cold season conditions.

The predictand is regarded as ‘‘perfect’’, i.e. no noise is

added. The noise is intended to mimic errors inherent to the

predictor data (Eq. 1). White noise is added to be consistent

with the premises given by the regression model used, i.e.

the residuals are independent and identically distributed

(i.i.d.). We have selected the five SNR 0.25, 0.4, 0.5, 1 and

? (no added noise) according to Mann et al (2007). With

r = SNR/(1 + SNR2)1/2 the SNR is related to the associated

root–mean–square correlation between the predictor data

and their associated local climate signal (Mann et al. 2007).

We obtain r = 0.24, 0.37, 0.45, 0.71 and 1.0 for the five

SNR values under consideration, respectively (Mann et al.

2007). As it is plausible that errors in proxy series are

serially autocorrelated, we use red noise to make the

uncertainties more realistic. The red noise is modeled as a

first- order autoregressive AR(1) process (Mann et al. 2007)

and represented by Xt = / Xt-1 + Zt, where Zt * WN(o,r2)

and / = 0. For AR(1) processes the autoregressive

parameter / is equal to the sample lag-1 autocorrelation

Fig. 1 The distribution of the

30 pseudoproxies used in this

study. Each dot corresponds to

the north-western corner of one

3.75� 9 3.75� gridbox of the

NCAR CSM 1.4 and ECHO-G 4

model
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coefficient q, here q = 0.32, 0.71. The sample lag-1 auto-

correlation coefficients for red noise as well as the five SNR

for white noise are the same as those evaluated in Mann

et al. (2007). This allows for direct comparison, making it

possible to determine whether RegEM performs better than

PC regression at the continental scale as well, and how the

increase in temperature variability due to the downscaling

affects the reconstruction results.

2.3 PC regression versus RegEM

RegEM was first described by Schneider (2001). It has only

recently been further developed and implemented by

Rutherford et al. (2005) and Mann et al. (2007), and is

compared to PC regression in the present paper. The two

reconstruction techniques each take a different approach to

the reconstruction ‘‘problem’’ (Fig. 2). With PC regression,

past temperature values are ‘‘retrodicted’’, i.e. predicted

into the past, whereas with RegEM missing values are

imputed, i.e. missing values are replaced by plausible ones.

While for RegEM the input is the whole data matrix

including the missing and available values, as indicated in

red (Fig. 2), for PC regression only the available predict-

and and predictor values are part of the input, as shown in

green (Fig. 2).

2.3.1 Multivariate principal component regression

Multivariate PC regression seeks to reconstruct the past

temperature field using the PC of both the predictand and

the predictors:

ypc ¼ xpcBþ e ð2Þ

where B are the regression coefficients relating the

explanatory variables xpc, i.e. the predictor information,

and the target ypc, i.e. the predictand. The relationship is

assumed to be a linear function of parameters stationary

over time. The regression coefficients of the calibration

period, here B, are estimated by OLS and then used to

‘‘retrodict’’ past temperature values. Predictand and pre-

dictors are transformed to their PC to obtain orthogonal

series and make it possible to reduce the dimensionality

of the data while still retaining most of the variability

contained in the full dataset (Wilks 1995). This allows for

climatic interpretation of temperature fields, as first few

PC typically capture large-scale modes. Here the calcu-

lation of the PC is based on the correlation matrix as for

instance in Luterbacher et al. (2004). Furthermore, they

are truncated as in that study, i.e. most of the variance is

captured by considering only the most important direc-

tions of the joint variations, thus avoiding redundancy

(Wilks 1995).

2.3.2 Regularized expectation maximization

RegEM is a covariance-based iterative CFR technique

based on the idea of gradual linear modeling of the rela-

tionship between missing values and available values, also

taking into account ill-posed or under-determined settings

(Mann et al. 2007). The input data matrix combines both

predictand and predictor data over the full reconstruction

period:

xm ¼ lm þ ðxa � laÞBþ e ð3Þ

where B refers to the regression coefficients relating

available values xa and missing values xm within the

multivariate data set. e is the random vector representing

the error with mean zero and the according covariance

matrix C to be determined (Schneider 2001; Mann et al.

2007). The conventional iterative Expectation Maximiza-

tion algorithm (EM) estimates the mean and the covariance

matrix of an incomplete data matrix and imputes values for

the missing ones (Schneider 2001). The EM algorithm is

used under the assumption that the predictand and predictor

data are Gaussian. With each iteration step, estimates of the

mean l and the covariance-variance matrix R of the input

matrix are calculated, followed by the computation of

estimates of the coefficient matrix B and the residual

covariance matrix C. The iteration is repeated step by step

until the convergence criterion is fulfilled (Schneider 2001;

Mann et al. 2007).

In cases where the number of variables exceeds sample

size the EM algorithm has to be regularized, as ill-posed

problems lead to singularity of the covariance-variance

matrix R (Schneider 2001). Instead of estimating the coef-

ficients B by the conditional maximum likelihood method

given the estimates of l and R, the parameters are estimated

Fig. 2 Scheme of the analogousness/differences between PC regres-

sion (green) and RegEM (red). PC regression corresponds to

‘‘retrodiction’’ and RegEM to the imputation of past temperature

values. The input matrix for both techniques is indicated in colors
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by TTLS. Thus, in order to regularize the covariance matrix

R its PC are truncated, i.e. only a specific number of PC is

considered, according to the truncation parameter. For fur-

ther information and a more detailed description of RegEM

see Schneider (2001), Rutherford et al. (2005) and Mann

et al. (2007). In our study the non-hybrid, revised version of

RegEM is used (Mann et al. 2007). We standardized the

available values with regard to the calibration period, 1900–

1990 AD, to ensure that the testing of climate reconstruction

methods relies on the appropriate application of real world

constraints (e.g. Smerdon and Kaplan 2007). The truncation

parameters for TTLS are chosen in two ways. The first is as

explained in Mann et al. (2007). Mann et al. (2007) identify

optimal truncation parameters based on the estimate of the

noise continuum to the log-eigenvalue spectrum (Wilks

1995). This procedure serves to determine leading eigen-

values that lie above the estimated noise continuum. The

second way is by evaluating a range of possible other

truncation parameters and then selecting the parameters

leading to reconstruction results with smallest differences in

mean and standard deviation to the target over the verifi-

cation period. As stated in Mann et al. (2007), the choice of

the truncation parameters is not unique. This is illustrated

here: validation scores of reconstruction results obtained

with the log-eigenvalue spectrum criteria are shown toge-

ther with those of reconstruction results (see supplementary

online material) using alternative truncation parameters.

Furthermore, the reconstructions were performed both

with and without the PC of the predictand. However,

analyses indicated that results using or not using PC

analysis do not differ much (not shown), and therefore, in

this paper, we restrict our results to the case of not using

the PC of the predictand. In this way another ambiguous

choice is avoided and the whole range of variability is

retained for reconstruction.

2.4 The comparison criteria

PC regression and RegEM are compared to each other in

the same experimental setting. As mentioned above, the

reconstructions are performed within the surrogate climate

of the NCAR CSM 1.4 and ECHO-G 4 climate models

using 30 pseudoproxies with different SNR, all constant

over time. We investigate how and to what extent the

quality of the predictor data affects the reconstruction skill.

Furthermore, we evaluate the results of the two techniques.

On the one hand, the skill of the reconstructions is analyzed

focusing on the European average only. For this reason,

figures display the target, the European average tempera-

ture from 1001–1990 AD, in comparison to the

reconstruction results, accompanied by a quantitative

summary of the skill. The commonly used reduction of

error (RE) and coefficient of efficiency (CE) skill scores

are calculated. Tables 1 and 2 indicate the RE and CE skill

scores over the verification period 1001–1899 AD, both for

NCAR CSM 1.4 and ECHO-G 4. On the other hand, we

concentrate on the climate field information, i.e. the spatial

patterns. Our focus here lies on the averaged reconstruction

bias, and RE calculated for the 30-year filtered recon-

struction results at each gridpoint, both over the verification

period 1001–1899 AD. In first comparing the target with

the reconstruction results for each technique separately,

and subsequently comparing the results of PC regression

with those of RegEM, we determine how well the tech-

niques perform, depending on the influence of the errors

inherent to the predictor information.

3 Results

3.1 Impact of the quality of the predictor data

The subsequent figures all refer to results obtained using

NCAR CSM 1.4, whereas the results produced with

ECHO-G 4 are provided in the supplementary online

material, with the exception of the skill scores tables

(Tables 1, 2), which are shown for both climate models.

Figures 3 and 4 show the methodological comparison

for averaged European summer (Fig. 3, suppl. Fig. 3) and

winter (Fig. 4, suppl. Fig. 4) temperature reconstructions

from 1001 to 1990 AD (land and sea). The figures display

temperature anomalies with regard to the calibration period

1900–1990 AD. The target, i.e. the average of the simu-

lated European surface air temperature over the past

millennium, is shown in black, while the average of the

reconstructed summer and winter temperature fields are

given in color. All curves are smoothed with a 30-year

running mean. The results differ according to the five white

noise scenarios used in the reconstructions. The NCAR

CSM 1.4 target exhibits variability with quite large quasi-

periodic amplitude variations over the past millennium,

both in summer and in winter. The variability for summer

and winter average temperatures is similar to that exhibited

by the ECHO-G 4 run (von Storch et al. 2004; González-

Rouco et al. 2006).

The reconstructions realized with PC regression (Fig. 3,

suppl. Fig. 3, top) and the perfect pseudoproxy set, i.e. no

white noise added (yellow line), capture the target very

well. However, the more white noise is added to the signal,

the more this technique fails to properly reconstruct, and

underestimates the amplitude of the target temperature

variations. Thus, the difference between negative temper-

ature anomalies of the reconstruction results and the

calibration period mean is not as large as that of the target

and the calibration period mean, i.e. the reconstruction

being to warm. There is a shift from the scenarios with
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higher SNR, SNR ? and SNR 1 (yellow and red lines) to

those with lower SNR, SNR 0.5, 0.4, 0.25 (blue and green

lines), and a decrease in skill indicated by the RE and CE

scores in Tables 1 and 2. The RegEM reconstruction result

of the SNR ? scenario captures the target well, too. In

comparison to PC regression, RegEM captures the target

Table 1 RE as well as CE skill scores for the NCAR CSM 1.4 results shown in Figs. 3, 4, 5 and 6, and the non-filtered reconstruction results

(not shown)

PC reg RegEM

30 year filtered Non-filtered 30 year filtered Non-filtered

su wi su wi su wi su wi

Reduction of error (RE)

Perfect 0.99 0.97 0.96 0.95 0.96 0.98 0.874 0.91 0.84 0.91 0.77 0.88

SNR1 0.92 0.86 0.81 0.73 0.98 0.96 0.873 0.92 0.65 0.78 0.73 0.75

SNR0.5 0.74 0.66 0.56 0.42 0.97 0.95 0.86 0.84 0.58 0.51 0.4 0.32

SNR0.4 0.65 0.59 0.45 0.32 0.96 0.91 0.8 0.77 0.34 0.31 0.14 0.02

SNR0.25 0.45 0.45 0.22 0.14 0.839 0.82 0.6 0.54 -0.12 -0.24 -0.58 -0.56

SNR1, / = 0.32 0.86 0.74 0.74 0.6 0.93 0.9 0.86 0.95 0.65 0.63 0.62 0.76

SNR1, / = 0.71 0.8 0.68 0.67 0.49 0.843 0.91 0.75 0.9 0.66 0.71 0.39 0.6

Coefficient of efficiency (CE)

Perfect 0.98 0.92 0.85 0.86 0.86 0.94 0.633 0.74 0.45 0.68 0.33 0.66

SNR1 0.73 0.59 0.36 0.2 0.92 0.85 0.630 0.77 -0.19 0.24 0.22 0.28

SNR0.5 0.13 0.003 -0.47 -0.7 0.88 0.81 0.598 0.53 -0.43 -0.66 -0.76 -0.98

SNR0.4 -0.19 -0.21 -0.86 -0.996 0.59 0.703 0.43 0.34 -1.23 -1.35 -1.53 -1.86

SNR0.25 -0.85 -0.62 -1.63 -1.52 0.45 0.4 -0.16 -0.35 -2.8 -3.19 -3.62 -3.55

SNR1, / = 0.32 0.54 0.24 0.13 -0.18 0.77 0.67 0.605 0.85 -0.18 -0.24 -0.11 0.31

SNR1, / = 0.71 0.31 0.05 -0.13 -0.5 0.47 0.704 0.263 0.71 -0.14 0.02 -0.77 -0.16

The calibration period is from 1900 to 1990 AD, the verification period from 1001 to 1899 AD. For RegEM RE and CE are shown for two

different TTLS parameters (left, TTLS parameters chosen as in Mann et al. (2007), right, as additionally proposed in this paper)

Table 2 As Table 1, but for ECHO-G 4 (results see supplementary online material)

PC reg RegEM

30 year filtered Non-filtered 30 year filtered Non-filtered

su wi su wi su wi su wi

Reduction of error (RE)

Perfect 0.99 0.996 0.96 0.93 0.947 0.98 0.986 0.99 0.84 0.92 0.75 0.78

SNR 1 0.93 0.89 0.85 0.7 0.92 0.96 0.95 0.97 0.79 0.81 0.36 0.04

SNR 0.5 0.79 0.66 0.65 0.35 0.89 0.87 0.82 0.85 0.63 0.46 -1.73 -1.45

SNR 0.4 0.7 0.6 0.54 0.25 0.88 0.82 0.77 0.77 0.53 0.27 -2.72 -2.31

SNR 0.25 0.62 0.49 0.42 0.07 0.91 0.92 0.81 0.65 0.12 -0.11 -2.3 -2.36

SNR 1, / = 0.32 0.94 0.952 0.84 0.78 0.948 0.95 0.95 0.94 0.82 0.72 0.39 0.4

SNR 1, / = 0.71 0.81 0.953 0.68 0.62 0.97 0.84 0.86 0.85 0.79 0.32 0.18 0.17

Coefficient of efficiency (CE)

Perfect 0.95 0.991 0.8 0.86 0.760 0.92 0.97 0.98 0.28 0.61 0.47 0.53

SNR 1 0.67 0.76 0.29 0.35 0.64 0.79 0.9 0.93 0.02 0.13 -0.37 -1.04

SNR 0.5 0.01 0.28 -0.62 -0.37 0.51 0.39 0.62 0.68 -0.7 -1.48 -4.81 -4.22

SNR 0.4 -0.38 0.15 -1.11 -0.59 0.45 0.18 0.51 0.52 -1.15 -2.37 -6.91 -6.05

SNR 0.25 -0.75 -0.09 -1.67 -0.97 0.6 0.62 0.59 0.27 -3.07 -4.11 -6.01 -6.15

SNR 1, / = 0.32 0.72 0.898 0.25 0.53 0.762 0.78 0.88 0.87 0.15 -0.3 -0.29 -0.27

SNR 1, / = 0.71 0.12 0.899 -0.47 0.2 0.87 0.26 0.71 0.69 0.01 -2.14 -0.74 -0.77
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summer average temperature (Fig. 3, suppl. Fig. 3, bottom)

more adequately for all white noise levels.

After focusing on the performance of the techniques for

summer reconstructions, we now turn to the reconstruction

results for European winter average temperatures (Fig. 4,

suppl. Fig. 4). Figure 4 shows that both techniques capture

the target average temperature less accurately for winter

than for summer (Fig. 3, suppl. Fig. 3), a finding which is

more pronounced for NCAR CSM 1.4 than for ECHO-G 4.

In principle, we obtain the same picture for PC regression

as described above for the European summer average

temperature reconstruction results. However, the RE and

CE skill scores are higher for summer than for winter

(Tables 1, 2). Overall, RegEM seems to be more robust and

less sensitive to the amount of white noise added to the

signal than PC regression, although, as seen for winter

(Fig. 4, and even more so suppl. Figure 4), it appears that

RegEM can ‘invent’ undesirable, temporal features, such

as various spurious quasi-periodic variations, which do not

exist in the target data. Nevertheless, the range of the

variability of the 30-year filtered results corresponds better

to that of the target for RegEM (RE and CE 30-year filtered

Fig. 3 European summer

average temperature anomalies

(30-year running mean) wrt

1900–1990 AD, for PC

regression (top) and RegEM

(bottom), using 30

pseudoproxies (see Fig. 1) with

varying white noise added to the

signal. The target (black line) is

compared to the reconstruction

results (colored lines). TTLS

indicates which truncation

parameter is used to reconstruct

Fig. 4 As Fig. 3, but for winter
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in Tables 1 and 2). While both techniques reconstruct the

target average temperature less accurately with increasing

noise level (Tables 1, 2), RegEM does so to a considerably

lesser degree than PC regression.

Figures 5 and 6 (suppl. Figs. 5, 6) show a second

comparison of reconstruction results of the summer and

winter average temperature anomalies with regard to the

1900–1990 AD calibration period, now with red noise

applied in comparison to the corresponding white noise

scenario. The middle white noise scenario SNR 1 is dis-

played together with the two red noise scenarios with the

same SNR, but different sample lag-1 autocorrelation

coefficients q = 0.32, 0.71 (as mentioned above, chosen

according to Mann et al. (2007)). For PC regression

(Figs. 5 and 6, suppl. Figs. 5 and 6, top) the addition of red

noise (orange and magenta line) affects the skill of the

reconstruction slightly more than the addition of white

noise with SNR 1 (red line), both for summer and winter

according to RE and CE (Tables 1, 2). For RegEM, the

target temperature variations also remain appropriately

reconstructed for summer when red noise is added instead

of white noise according to RE and CE (Tables 1, 2),

although adding red noise with an autocorrelation coeffi-

cient q = 0.71 (magenta line) clearly increases the

variability of the reconstruction result in winter.

The RE and CE scores for the 30-year filtered data

(Tables 1, 2) quantitatively describe the reconstruction

results (Figs. 3, 4, 5 and 6, likewise for ECHO-G 4 in the

supplementary online material) and confirm that RegEM

performs better than PC regression focusing on the evalua-

tion of the low frequency variations (RE and CE 30-year

filtered in Table 1 and 2). Nevertheless, a glance at the RE

and CE scores calculated for non-filtered results (figures not

shown) reveals differences in the performance of the

reconstructions seen in Figs. 3, 4, 5 and 6. Summer average

temperature reconstructions using RegEM also produce

lower RE scores than those using PC regression under the

different white and red noise scenarios (RE non-filtered in

Tables 1 and 2). Winter temperature reconstructions based

on RegEM and PC regression RE and CE scores are com-

parable (Table 1), and slightly lower in a few cases for

RegEM (Table 2). The SNR 0.25 scenario, in particular,

leads to lower skill score values, and the result is generally

unsatisfactory. Using rednoise scenarios (Fig. 6, suppl. Fig.

6, bottom), the range of the variability of the SNR 1 scenario

with an autocorrelation coefficient of q = 0.71 (magenta

line) is rather somewhat too large compared to the target

(Fig. 5, suppl. Fig. 5) for RegEM. Finally, several scenarios

for both summer and winter even return negative annual RE

and CE scores with RegEM, indicating that these recon-

struction results have no skill. With the alternative way of

determining the TTLS parameters for RegEM (supplemen-

tary online material), equally skilful, and in some cases even

more skilful reconstructions can be achieved. For PC

regression, RE scores indicate that all reconstruction results

have skill; however, this is contradicted (for SNR 0.5, SNR

0.4 and SNR 0.25) by the corresponding CE scores (Figs. 3

and 4, suppl. Figs. 3 and 4).

To summarize: Figs. 3 and 4 (Suppl. Figs. 3 and 4) as

well as Tables 1 and 2 indicate that both techniques

reconstruct European temperature variability more ade-

quately for summer than for winter. RegEM seems to be

Fig. 5 European summer

average temperatures anomalies

(30-year running mean) for PC

regression (top) and RegEM

(bottom). The white noise

scenario SNR 1 (red line) is

compared with two different red

noise scenarios (orange and
magenta lines); the target is

shown in black. TTLS indicates

which truncation parameter is

used
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more robust than PC regression with regard to the effect of

noise added to the signal. Figures 5 and 6 (Suppl. Figs. 5

and 6), as well as Tables 1 and 2 display that reconstruc-

tions using red noise instead of white noise still retain skill.

Nevertheless, the increase in variability in the results

affects the reconstruction skill, more so in winter than in

summer. Finally, there is a difference in reconstruction

skill depending on variability frequency.

3.2 The spatial skill patterns of the reconstructions

Figures 7 and 8 (Suppl. Figs. 7 and 8) show the spatial skill

patterns of the summer and winter reconstruction results

from Figs. 3 and 4 (Suppl. Figs. 3 and 4) under the three

different white noise scenarios, i.e. SNR ?, SNR 1 and

SNR 0.5. Since examining RE, the relation between the

squared reconstruction error and the squared anomalies

from the calibration average, is somewhat controversial

(Buerger and Cubasch 2007), we have chosen to add a

more intuitive skill measure, and also to look at the spatial

differences of the two techniques, thus making it possible

to directly determine the origins of the underestimation of

the target temperature variations in the reconstruction

results. Accordingly, the spatial skill is defined here as the

differences between reconstructed and target temperature

anomalies, i.e. the bias, averaged over the verification

period, 1001–1899 AD, and the RE skill scores for the

30-year filtered results calculated for each gridpoint. This

corresponds to a validation of the whole summer and

winter temperature field. Positive bias values indicate that

the difference between the average of reconstructed tem-

perature anomalies over the verification period and the

calibration period mean is smaller than that between target

and calibration mean. Thus the target temperature anoma-

lies are underestimated by the reconstructed anomalies, and

overestimated for negative bias values. A lack of predictor

model gridpoints (see Fig. 1) in the Atlantic leads to con-

siderable uncertainties over that area both for summer and

winter reconstructions (Figs. 7 and 8, suppl. Figs. 7 and 8).

This effect is to be expected. However, the smaller the

SNR, the larger the area with underestimation of target

temperature anomalies becomes for summer and winter.

Again, this is less pronounced for RegEM than for PC

regression. Thus RegEM seems to be less dependent on the

SNR than PC regression. The spatial skill patterns of

RegEM are quite similar to those of PC regression. Nev-

ertheless, for PC regression the underestimation of the

target temperature variations during the verification period

in the field is more clearly indicated. The spatial validation

of the two techniques discloses the underestimation of

amplitude seen for the European average temperatures in

Figs. 3 and 4 (Suppl. Figs. 3 and 4) for PC regression.

Focusing on the spatial RE scores for the 30-year filtered

reconstruction results, we conclude that no large differ-

ences can be seen, despite the fact that RE skill scores are

again higher for summer results than for winter.

4 Discussion

The results presented in this comparison of PC regression

and RegEM reveal a seasonal dependence of reconstruction

skill. Both techniques seem to perform more accurately

(Figs. 3 and 5 compared to Figs. 4 and 6, likewise for

Fig. 6 As Figure 5, but for

winter
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ECHO-G 4 in the supplementary online material) for

reconstructing summer average temperatures than winter

when focusing on how well the low frequency variability of

the target is captured. Testing the techniques with a less

dense predictor network (12 gridpoints representing real

world proxy series used to reconstruct the late Maunder

Minimum (Kuettel et al. 2007), not shown) confirms

these findings, although with an additional decrease in

reconstruction skill. The more skilful performance in

reconstructing European summer temperatures over the last

millennium might be explained by the fact that the range of

temperature variability is smaller in summer than in winter.

Consequently, the impact of adding noise to the signal with

smaller standard deviations in summer than in winter is less

remarkable. Thus the reconstruction skill is less affected for

summer than for winter. Furthermore, this is also potentially

related to the spatial distribution of the predictor network

used here. Predictor networks which may be optimal for

reconstructing summer temperatures are not necessarily

optimal for reconstructing winter temperatures (Pauling

et al. 2003; Luterbacher et al. 2006; Kuettel et al. 2007).

The performance of reconstructions seems to depend

less on the red structure of noise for the SNR 1 scenario

with an autocorrelation coefficient q = 0.32 than with

q = 0.71 (RE and CE 30-year filtered in Tables 1 and 2).

For q = 0.71 the variability of the reconstruction results,

Fig. 7 Spatial skill patterns of the European summer temperature

reconstructions using PC regression (left) and RegEM (right) with

white noise scenarios SNR ?, SNR 1, and SNR 0.5. The skill is

defined by the average of the bias (reconstructed values—target

values) (shaded) and RE (contours) calculated for each gridpoint over

the verification period from 1001 to 1899 AD. The scale refers to the

bias, i.e. differences in temperature anomalies for summer. Colors
indicate reconstructed values that are about (greenish blue and green),

higher (light green, yellow to red) or lower (light blue to violet) than

the target values
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especially for winter, is considerably increased using Re-

gEM (Fig. 6, suppl. Figure 6). Furthermore the skill of the

reconstruction is generally more affected for the SNR 1

scenario with q = 0.71 than with q = 0.32 or for white

noise only. However, analyses of typical red noise char-

acteristics of realworld data (in Luterbacher et al. 2004)

reveal, that q = 0.71 is not seen in the data and q = 0.32

is presumably more indicative of real world proxies. Still it

is useful to study a range of autocorrelation coefficients to

obtain an understanding of how reconstruction results

depend on different types of noises. Nevertheless, the noise

scenarios in this paper certainly do not mimic the full

range of characteristics of noisy real world predictor series,

once again indicating that there is a need to model pre-

dictor data and inherent uncertainties more realistically

(Moberg et al. 2008). Tables 1 and 2 indicate that both

techniques lose skill to an increasing degree as more noise

is added to the signal. RegEM is less sensitive to and less

affected by the noise addition than PC regression, but

applying RegEM instead of PC regression in reconstruct-

ing, one of the fundamental statistical problems remains.

Furthermore, while for the 30-year filtered data (Tables 1,

2) RE and CE skill scores confirm that RegEM performs

more accurately than PC regression, the skill scores for the

non-filtered reconstruction results are nevertheless lower

for RegEM than for PC regression, especially in winter.

One explanation might be, that using RegEM, mean and

covariance of the whole input data matrix are iteratively

estimated. The fact that the statistical characteristics of the

whole input matrix are addressed together over the cali-

bration and verification periods might be a reason for the

less accurate inter-seasonal performance of RegEM, as

Fig. 8 As Figure 7, but for winter. Colors indicate reconstructed values that are about (light blue and greenish blue), higher (light green to

green, yellow, red) or lower (dark blue to violet) than the target values
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exhibited by the validation of the non-filtered results.

Furthermore, considering the reconstruction results in

Figs. 3 and 4 (top, likewise ECHO-G 4 in the supple-

mentary online material) and the RE scores in Tables 1

and 2, it is an alarming sign that the PC regression results

still achieve such high RE scores; moreover, the RE scores

are put into the right perspective by the negative CE

scores. The implication for reconstructions with real world

proxy data is that verification has to be conducted very

carefully by applying different means of validation. The

interpretation of reconstruction skill and the reasonable

verification of reconstruction results are delicate and not

free from contradictions. Therefore, the development of

alternative and more intuitive tools, as well as more

thorough validation must be attempted (e.g. Wahl and

Ammann 2007).

Why should it be the case that RegEM captures the

target average 30-year filtered temperature variations more

adequately than PC regression? When applying PC

regression, we use OLS to estimate the regression coeffi-

cients for the calibration period. By contrast, when

applying RegEM we use either the conditional Maximum

likelihood method (if no regularization is needed) or TTLS

(if the problem is ill-posed). These different estimation

techniques, especially TTLS, which takes into account

errors in the explanatory variables (Eq. 1, eproxy), have a

crucial impact on the reconstruction skill. Another impor-

tant difference is the nature of RegEM as an iterative

process which is non-linear in general. Finally, RegEM not

only provides estimates of the mean with each iteration

step, but of the variance as well. We expected RegEM to be

better than PC regression prior to this study, but we also

expected it to be better than our results now indicate. One

expectation for the less pronounced difference is that the

reconstruction performance depends not only on the sta-

tistical technique chosen, but also on the choice and quality

of the predictor network. Therefore, these other factors

should be optimized, as well.

However, the use of RegEM also leaves room for future

methodological improvements. Mann et al. (2007) recently

addressed the problem of choosing truncation parameters.

This was also investigated prior to applying RegEM here.

The validation of a range of parameters, close to the one

proposed by Mann et al. (2007), demonstrated that com-

parable results can be obtained by using alternative

parameters (supplementary online material). We therefore

urge the evaluation of several truncation parameters over

the verification period.

Despite all this, we prefer RegEM to PC regression in

this case, as it captures the multi-decadal variations of the

target summer and winter European average temperatures

more accurately (Figs. 3, 4, 5 and 6, likewise for ECHO-G

4 in the supplementary online material) than PC regression

when focusing on lower frequency variability (RE and CE

30-year filtered in Tables 1 and 2).

5 Conclusions and perspectives

The outcomes regarding the performance of the two

reconstruction techniques are restricted to the specific

experimental setting used in this paper. As mentioned

above the tests are based on NCAR CSM 1.4 and ECHO-G

4 climate model data, a predictand which consists of 476

gridpoints (land and sea), a pseudoproxy network with 30

gridpoints (Fig. 1), and scenarios based on different SNR

constant over time. By comparing the two CFR techniques,

-PC regression and RegEM,- at a continental and seasonal

scale, we have demonstrated that the reconstruction skill

differs according to the spatial and temporal scales the

techniques are applied to. The fact that RegEM achieves

different results for continental and hemispheric recon-

structions (Mann et al. 2007) emphasizes the necessity of

downscaling to smaller spatial and subannual temporal

scales, in order to achieve a better understanding of the

robustness and skill of the reconstruction techniques on

higher temporal and spatial scales. Furthermore, hemi-

spheric annual temperature reconstructions do not provide

information about regional-scale variations, such as the

intrinsic seasonal patterns of climate change as they have

occurred, for instance, in Europe during past centuries

(Mann et al. 2000; Luterbacher et al. 2004, 2007; Xoplaki

et al. 2005). We found seasonal differences in the perfor-

mance of RegEM and PC regression, and we demonstrated

that predictor data quality has a crucial impact on recon-

struction skill. RegEM has proved that more adequate

results can be obtained by better incorporating the errors in

the predictor data to reconstruct surface air temperature

fields. However, the choice of the right TTLS parameters

turned out to be ambiguous, and the procedure for selecting

the most accurate ones needs further investigation. If no

noise, or noise with a high SNR, is added to the signal, PC

regression performs just as well as RegEM for winter and

for summer. If noise with a smaller SNR is added to the

climatic signal, the performance of RegEM proves to be

more robust compared to PC regression. If the variability

range is too large, as is the case e.g. for SNR 0.25 and SNR

1 with q = 0.71, both RegEM and PC regression exhibit

deficits: the amplitude of target temperature variations

tends to be underestimated by PC regression and overes-

timated by RegEM. However, overestimation might be

adjusted by the choice of more suitable TTLS parameters.

The next step will be to quantify the differences between

PC regression and RegEM by applying the two techniques

to real world data, given a varying number of predictors and

SNR over time. There is still a need and potential for further
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optimizations of CFR techniques, such as RegEM, that take

better account of errors. PC regression can still be optimized

as well, e.g. by restriction to land areas only (Luterbacher

et al. 2004; Xoplaki et al. 2005), optimization of PC trun-

cation, or the implementation of different regression

coefficient estimation procedures. Certainly other settings,

and more realistic real world conditions have to be con-

sidered in future. On the one hand CFR techniques need to

be better adapted to the specific character of the predictor

data, and on the other, the quality of the predictor data has to

be better understood, quantified and modeled. Exclusive use

of classical multivariate statistics should be expanded to

include solutions already developed in other research areas,

e.g. econometrics. Time series analysis offers still further

solutions, such as state space models and the use of Kalman

filters (Lee et al. 2007), that are also worth exploring with

regard to climate field reconstructions.
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