Hail time series from radar proxies for decadal variability
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Motivation

Hailstorms in Switzerland regularly cause substantial damage and costs.

Recent studies showed significant differences in interannual hail variability
north and south of the Alps (Barras et al. 2021, Nisi et al. 2018, 2020).
However, an analysis of the long-term variability or changes in

seasonality and its drivers is still missing.

To do that a new daily hail time series for Northern and

Southern Switzerland from 1950 to today is produced.
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Results

Model predictors match those found in the
literature (Madonna et al. 2018, Mohr et al. 2015).
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Multiple logistic regression model to
predict haildays as a function of dif ferent
meteorological factors {x,,x,,...,x,} as in-
dependent variables.
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Good model performan ce by both models with

93 % | 90% accuracy for the test datasets. Threshold valueis set to ppqy = 0.5.

Interannual variability and seasonality more or less reflected by both
models, however, over- and especially underprediction are still
problematic. Extreme values remain difficult to predict in both regions.

Stepwise bidirectional predictor selection with VIF pre-treatment ( < 4) to
remove multicollinearity, AIC [ BIC optimization, and expert judgement.

Seasonality is addressed by a factor (month) as categorical predictor and

long-term trends by the variable year
ariable X anai n
(absolute value).
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Metrics CSI, POD, FAR and accuracy were

:
considered to find the best model.

Model in region north generally shows better performance.

Logistic regression suitable for hailday prediction based on
radar proxies, however, other models should be tested
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