
Simulating the effect of check dams on landscape 
evolution at centennial time scales

Jorge Alberto Ramirez, Mirjam Mertin, 
Markus Zimmermann, Margreth Keiler



Pros Cons

Reduction of slope 
gradient

Expensive investment 
and maintenance

Less channel erosion Limited lifetime

Increase bank stability Ecological problems

Pros and cons of check dams
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Check dam
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A check dam is a small dam constructed across a river 
to counteract erosion by reducing water flow velocity



check dams in the Guerbe

• Guerbe river is located in the Swiss preAlps

• Catchment area of 12 km2

• River contains 120 check dams, first built in 1860

• Average river slope is 9°

Study site: Guerbe river
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Maintenance cost of check dams and protective system is 2 million USD/year

• In 1990, after a major flood event renovation costs were 40 million USD

• Most expensive river in Switzerland, but many other rivers are similar

Bachmann (2009)

Guerbe check dams
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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What would happen geo-morphologically if 
check dams were no longer maintained and 

allowed to structurally deteriorate?

Research question
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Catchment or reach based cellular model

• Models morphological change

• Hydrological model is TOPMODEL (surface runoff)

• Hydraulic model is Lisflood-FP (flow depths and velocities)

• Sediment transport

• Bedload, 9 fractions using Wilcock & Crowe equation

• Slope processes include landslides and soil creep

Catchment scale Reach scale

Modelling approach: CAESAR-Lisflood
Background > Approach & Data > Calibration > Proof of concept > Conclusion 

6



1. Calibrate hydrological model on 
large catchment using observed 
discharge and simulated rainfall

2. Apply calibrated parameters to 
sub-catchment and use simulated
rainfall to generate water and
sediment flux

3. Water and sediment outputs 
from sub-catchment become 
inputs to reach scale model with 
check dams

Model setup
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• AWE-GEN-2d model combines physical and stochastic approaches to generate gridded 
climate variables

• Rainfall is simulated at hourly and 1-km resolution 

Dynamic rain fields

Peleg et al. (2017)
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Rainfall
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Weather station rainfall used to calibrate storm arrival timing 

• Observed daily resolution gridded rainfall used to calibrate rainfall intensity 

• 100 years of rainfall based on the last 30 years of climate



Topography
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• Extracted location of check dams in 2 m spatial resolution DEM 
• 2 m DEM resampled to 15 m spatial resolution
• Check dams are reinforced into DEM to ensure topographic representation
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CORINE Land Cover (2012)

Grass

Forest

Land cover
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Spatially distributed 
land cover of two types



Hydrological calibration
Background > Approach & Data > Calibration > Proof of concept > Conclusion 

• For the large catchment calibrate 
hydrological model using spatially 
distributed :
• modelled rainfall
• land cover

• Parameterize hydrological model for 
the effect of land cover on the 
movement and storage of water 
within the soil

• Replicate magnitude and frequency 
of hourly discharge recorded at 
gauging station

rainfall and land cover 
grid structure

gauging
station
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Hydrological calibration
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Hydrological calibration
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Higher parameter 
values is a well 
vegetated catchment, 
with high soil 
moisture storage, and 
lower flood peaks

Lower parameter 
values is a sparsely 
vegetated catchment  
and flashier 
hydrological regimes
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observed
modelled
modelled (best match)

Hydrological calibration shows promising results, but is still in progress…
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Does a reach scale model respond to check dam failure?

• examine channel changes after check dam failure (erosion and deposition)

• examine the effect of check dam failure on sediment yield

Reach scale model
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• 2.5 km

• 15 m spatial resolution DEM 

• 73 check dams

Elevation (m)
1260

790

Guerbe reach

500 m

check dam

Guerbe catchment

Reach scale model
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Elevation (m)
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Guerbe reach

500 m

check dam

Guerbe catchment

Reach scale model
Background > Approach & Data > Calibration > Proof of concept > Conclusion 

18

• 2.5 km

• 15 m spatial resolution DEM 

• 73 check dams



• 9 grain size classes (sand to boulder) were estimated through field methods

• Each gird cell in the model initially contains the same grainsize percentages

Grain size distribution

grain size

boulders

pebbles and cobbles

Grain size
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Guerbe reach

Input location
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• Hourly discharge

• Low flow: 0.25 m3 s-1

• Floods of 24 hrs duration, 
with peak discharge of:
 minor:           30 m3 s-1

 moderate:    50 m3 s-1

 major:         100 m3 s-1 d
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Guerbe reach
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• Hourly discharge

• Low flow: 0.25 m3 s-1

• Floods of 24 hrs duration, 
with peak discharge of:
 minor:           30 m3 s-1

 moderate:    50 m3 s-1

 major:         100 m3 s-1

• Hourly sediment input

• Total annual sediment: 
1300 m3 (reach in 
equilibrium)

• Amounts of sediment 
were proportionally 
added over time based 
on the discharge that was 
above 5 m3 s-1
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Synthetic discharge and sediment
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• Expert knowledge used to develop rules

• Check dam failure is determined through a combination of check dam age and discharge

• Maintained check dams do not fail

Probability of 
check dam failure

0.5

0.4

0.3

0.2

0.1

0.0

Failure surface 

Check dam failure rules
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Failure rules executed once per flood 
event, per check dam
 Flood type: Minor
 Unmaintained check dam
 Check dam age: Young

• Probability of failure: Low

unmaintained
Check dam

maintained

Check dam failure rules
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Failure rules executed once per flood 
event, per check dam
 Flood type: Major
 Unmaintained check dam
 Check dam age: Old

• Probability of failure: High

Check dam failure rules
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Check dams in profile
Check dam failure 
short-term dynamics

Check dam failure
long-term dynamics

failure

Check dam failure implementation
Background > Approach & Data > Calibration > Proof of concept > Conclusion 

25



• 6 scenarios trialed

• 0-100% maintenance effort in increments of 20% 

• Maintained check dams selected in spatially equal intervals

100% maintenance 20% maintenance 0% maintenance

Check dam maintenance scenarios
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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100% 80% 20% 0% 

• Channel change = DEM year 0 – DEM year 100

• Major changes in channel elevation

40% 60% 

Maintenance effort

Channel 
more stable Channel

less stable

Results: Channel change
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Profiles of 100 years of channel change

• Check dams stabilize channel

• With less maintenance the channel become progressively less stable (standard deviation)
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Results: Channel change
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• Profiles of 100 years of channel change

• Check dams stabilize channel

• With less maintenance the channel become progressively less stable (standard deviation)
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Results: Channel change
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check dam failure

80% maintained
18% failed

A

B

• 100 years of check dam failure produces 
significant channel changes

• Erosion at location of check dam failure

• Deposition downstream from check dam failure

Results: Channel change
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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check dam failure

80% maintained
18% failed

A

B

• 100 years of check dam failure produces 
significant channel changes

• Erosion at location of check dam failure

• Deposition downstream from check dam failure

Results: Channel change
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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• Check dam maintenance has an effect on sediment yield

• First 20 years no check dam failures

• At two moments in time, check dam failures produce changes in sediment yield

Results: Sediment yield
Background > Approach & Data > Calibration > Proof of concept > Conclusion 
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Results: Summary
Background > Approach & Data > Calibration > Proof of concept > Conclusion 

• 50% increase in sediment yield between 100% and 0% maintenance of check dams

• Channel change and sediment respond quickly to less check dam maintenance

• >80% of the check dams are needed to maintain a stable river

More 
stable

33

Less 
stable



Higher failure probability

• Failure rules

• Check dam failure is a combination of age and discharge on a continuous scale

• Try different failure surfaces

Lower failure probability

• Generate plausible discharge and sediment inputs for the reach

Future work
Background > Approach & Data > Calibration > Proof of concept > Conclusion
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• What is the effect of climate change, including 
precipitation extremes, on check dam failure and 
geomorphic change?

• Are their phases in time when the reach is stable 
and unstable?

• What is the effect of model resolution (e.g. 5 m 
spatial resolution reach model)?

• The proof of concept model responds to check dam 
failure including changes in channel elevation and 
sediment yield

• Preliminary model results suggest that more than 
80% of the check dams are needed to maintain a 
stable river

Discussion and Conclusions
Background > Approach & Data > Calibration > Proof of concept > Conclusion
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Modelled rainfall calibration

A comparison (CDF) of the observed hourly rainfall from the MeteoSwiss gauge (19-year) and the 
overlaying simulated grid cell (30-year). 

Simulated
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CAESAR-Lisflood hydrology

Lisflood-FP and 
Wilcock and Crowe

TOPMODEL

m is a user-defined parameter
jt is the soil moisture store
jt– 1 is the soil moisture store from the previous iteration
T is time
r is the rainfall rate

calculate surface runoff (Qtot)

TOPMODEL
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Barkwith et al. (2015), Coulthard et al (2013)



CAESAR-Lisflood hydraulics

Lisflood-FP and 
Wilcock and Crowe

TOPMODEL

q is the flux between cells from the previous iteration (m2s-1)
g is acceleration due to gravity (m s-1)
n is Mannings roughness coefficient (m1/3s-1) h is depth (m)
z is elevation (m)
hflow is the maximum depth of flow between cells
x is the grid cell width (m) 
t is time (s)

calculate the flow (Q) between cells

Lisflood-FP

39

Barkwith et al. (2015), Coulthard et al (2013)



CAESAR-Lisflood sediment transport

Lisflood-FP and 
Wilcock and Crowe

TOPMODEL

Barkwith et al. (2015), Wilcock and Crowe (2013)

Fi denotes the fractional volume of the i-th sediment in the 
active layer
U* is the shear velocity
s is the ratio of sediment to water density
g denotes gravity
Wi * is a complex function that relates the fractional 
transport rate to the total transport rate

Sediment transport is driven by a mixed-size
formula, which calculates transport rates, qi, 
for each sediment fraction i

Wilcock and Crowe
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Flood statistic for Guerbe, Burgistein
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Return period [yrs] Discharge [m3/s]
Confidence
interval [m3/s]

2 24 19-29

10 44 39-49

30 56 51-61

100 69 64-74

300 80 75-85

40 Mio. USD
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