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Functioning of check dam
Construction in torrent to control sediments

Boix-Fayos (2008), Brown (2007), Dell’Agnese (2013), SUDAS (2013), Zeng (2009) 

Function of check dam

Pros

Reduction of slope gradient

Lower water velocity Sediment deposition

Control flow direction

Less channel erosion

Bank stability

Cons

Maintenance, renovation work

Efficiency loss

Ecological problems
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Check dam



Study site: Gürbe river in 
Bernese Oberland

https://map.geo.admin.ch

check dams 

in the Gürbe

• Gürbe river is located in the Bernese Prealps

• Torrent catchment area of 12 km2

• River contains 70 check dams, first built in 1860

• Average river slope is 9°
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• Maintenance cost of check dams and protective system is 2 million USD/year

• In 1990, after a major flood event renovation costs were 40 million USD

• Most expensive river in Switzerland, but many other rivers are similar
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Check dams in the Gürbe

Bachmann (2009)



Research Question

What would happen geo-morphologically if 
check dams were not maintained and 

allowed to structurally deteriorate?
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CAESAR-Lisflood
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Catchment scale

Reach scale

• Numerical modelling to understand complex 

physical processes which are difficult to 

simulate on a field or lab based approach

• Landscape evolution model

• Catchment or reach based cellular model

• Combination of
• Hydrological model (TOPMODEL)

• Hydraulic model (Lisflood-FP)

• Geomorphic model (CAESAR)

• Sediment transport
• Bedload, 9 fractions using Wilcock & Crowe 

equation

• Slope processes include landslides and soil 
creep



CAESAR-Lisflood
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Catchment scale



• Advantages of model

• Computationally efficiency

• Open source

• 2D

• Minimal parameterization

• Large spatial scale and temporal extent without 
sacrificing fine-scale (<10m resolution)

CAESAR-Lisflood
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Reach scale

Catchment scale
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1. Calibration on large catchment 
using observed discharge and 
simulated rainfall

Model setup
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3 step process

1. Calibration on large catchment 
using observed discharge and 
simulated rainfall

2. Generate discharge and sediment 
output from sub-catchment

3. Water and sediment outputs from 
sub-catchment is the input to the 
reach scale model with check dams2



• Digitize location of check dams in DEM (2m)
• Check dams are reinforced into coarser DEM 

(15m) to ensure topographic representation
check dams
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check dams

Topography
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Proof of concept: reach scale
Does a reach scale model respond to check dam failure?

• DEM (15m) with check dams “reinforced”

• 70 check dams

Elevation (m)
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Gürbe catchment
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Proof of concept: reach scale
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Does a reach scale model respond to check dam failure?

• DEM (15m) with check dams “reinforced”

• 70 check dams



Proof of concept: reach scale
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Gürbe reach
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Does a reach scale model respond to check dam failure?

• DEM (15m) with check dams “reinforced”

• 70 check dams

• Synthetic discharge and sediment input



• Expert knowledge used to develop rules

• Check dam failure determined through combination of check dam age and discharge

• Maintained check dams do not fail

Probability of 
check dam failure
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Check dam failure rules



Check dams in profile
Check dam failure 
short-term dynamics

Check dam failure
long-term dynamics

failure
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Check dam failure implementation



• 6 scenarios trialed

• 0-100% maintenance effort in increments of 20% 

• Maintained check dams selected in spatially equal intervals

100% maintenance 20% maintenance 0% maintenance

unmaintained
Check dam

maintained
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Check dam maintenance scenarios



100% 80% 20% 0% 

• Channel change = DEM year 0 – DEM year 100

• Major changes in channel elevation

40% 60% 

Maintenance effort

Channel 
more stable Channel

less stable

Deposition (m)
0.2-2
2-3
3-4
4-5
5-8

Erosion (m)
0.2-2
2-3
3-4
4-5
5-8
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Results: Channel change



• 50% increase in sediment yield between 100% and 0% maintenance of check dams

• >80% of the check dams are needed to maintain a stable river
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Results: Sediment yield



Future work

• Scenarios between 80-100%

• Different failure rules

• What is the effect of model resolution?

• When is the channel the most (un)stable during the 
100 years?

• Generate plausible discharge and sediment inputs 
for the reach

• The proof of concept model responds to check dam 
failure including changes in channel elevation and 
sediment yield

• Preliminary model results suggest that more than 
80% of the check dams are needed to maintain a 
stable river  how many more?
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Conclusion & Future work



• Raster rainfall generated by AWE-GEN-2d (Advanced WEather GENerator
for 2-Dimensional grid)

• Rainfall is simulated at hourly and 1-km resolution 

• Combines: rain-gauges, weather radar system

Peleg et al. (2017)
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Future Work: Simulated rainfall
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