December 1916: Deadly Wartime Weather

One of the worst meteorological disasters in history took place in the southeastern Alps during the infamous winter of 1916/17. Avalanches following a massive snowfall event killed thousands of soldiers as well as civilians. Novel insight into the event arises from a detailed reconstruction based on weather forecast models and shows the potential of combining numerical techniques with historical documents. This helps to better understand worst-case weather events in the past and future and their societal impacts.

A century ago, Europe was in the midst of World War I. On the Italian front, the Austro-Hungarian and Italian armies faced each other on some of the harshest battlefields in history – on the summits of the southeastern Alps (Box 1: The Italian front). Here, during a large part of the year, the fighting would cease almost completely, as a different war took place: a war against cold, ice, and snow.1,2 With an average precipitation exceeding 2 m per year in some locations, this part of the Alps is one of the wettest places on the continent. Soldiers were literally buried by snow and their bodies, exposed by shrinking glaciers, still provide a touching reminder of that absurd carnage.

Fate was not on the side of those men, as the winter of 1916/17 turned out to be one of the snowiest of the century (Fig. 1), a fact already noticed by contemporaries.3,4 Between November 1916 and January 1917, a rain gauge located on today’s Italy-Slovenia border measured 1432 mm of precipitation, about 80% of the local mean annual total. After a dry February, an additional 560 mm fell between March and April 1917.

However, there was one particular day that tragically entered history books: 13 December 1916. On this day, following a week of abundant snowfall, advection of a warm and humid air mass from the Mediterranean brought intense precipitation and a rise of snow level, causing countless avalanches across the region (see Box 2: Avalanches on the front). The number of human casualties was unprecedented for this kind of natural event. An accurate overall death count is not possible, but estimates of 10,000 by some sources5 are certainly too high. Official Austri-
Box 1: The Italian Front

The Kingdom of Italy declared war on the Austro-Hungarian Empire on 23 May 1915, almost one year into World War I. The border between the two countries was mostly on mountainous terrain, where the Austro-Hungarian army withdrew to solidly organized defensive positions. In fact, there were only minor changes to the front line until October 1917, when German troops joined the Austro-Hungarians to breach the Italian lines (famously known as the “Battle of Caporetto”). This forced the Italians to retreat more than 100 km into the plain of Veneto to the Piave River. However, the front line did not move between Stelvio and Monte Grappa until the end of the war. Eventually, in 1918, the Austro-Hungarian Empire collapsed and Italy ended up on the victorious side.

The cost in terms of human casualties was enormous. In three and a half years, about 650,000 Italians and 400,000 Austro-Hungarian soldiers were killed. In the high-altitude areas of the front line (in some places exceeding 3000 m a.s.l.), the losses caused by avalanches and exposure were of similar magnitude as those caused by enemy fire.

Box 2: Avalanches on the front

From the beginning of November, there was abundant snowfall along most of the front line. Reports by contemporaries suggest that, for most of the mountainous front line between Stelvio and Mount Krn, the shovel was the most important tool for soldiers and civilians alike. Avalanches came down almost daily, causing new casualties again and again. On the front line, tunnels were dug in the snow to reach the foremost positions.

In view of the unlikelihood of attacks by the opposing side, officers often withdrew soldiers from positions endangered by avalanches. Most of the time, however, the higher echelon – in warm offices in the valleys – demanded that the troops hold their positions. In the early hours on 13 December 1916 and later in the day, large avalanches plunged down on Austro-Hungarian and Italian positions – often expected by those troops in place. The largest single incident took place on the highest mountain of the Dolomites (Mount Marmolada, 3343 m a.s.l.) at Gran Poz (2242 m a.s.l.), where between 270 and 332 men died, some of whom were not recovered until July 1917. Josef Strohmaier, who was stationed there, commented: “every day there were new victims amongst the comrades” and, after being warned that the avalanche was coming, “we wanted to go to the door to escape, [but at this moment] the external wall was smashed by snow and ice. […] My bedfellow only said: ‘Kruzifix, now we are gone’.”

They – and many more on both sides – could be saved and were brought to hospitals like the one in Cortina d’Ampezzo, in which Nicola Ragucci served as a doctor. He commented: “the monster torrent of snow […] overran a two story barrack […] with a company of two hundred men. […] They were all buried by the avalanche, and unfortunately about forty died.”

However, direct hits were not the only impact of avalanches. Further casualties were caused by channels of supply that were blocked by the avalanches. In the early morning of 13 December, a large avalanche from the Gatterspitze destroyed parts of a camp close to Lake Obstans. During the evacuation of the soldiers another avalanche hit the cable car, preventing 120 officers and enlisted men from leaving the destroyed camp. Reportedly, both sides tried to trigger avalanches by means of artillery fire. However, the importance of that trigger remains to be studied.

Fig. 1: Daily snow depth evolution during the winter of 1916/1917 observed at three stations in South Tyrol, compared with the respective statistics of the period 1931–1960.

Photo 2: Field mass on the glacier of Marmolada (25 November 1916) in honor of the new Emperor of Austria, Charles I. Many of these men perished 18 days later under the avalanche of Gran Poz.
an sources give 1 300 deaths and 650 wounded for the period 5 – 14 December,6 while later estimates give 2 000 casualties for the avalanches on 12 and 13 December. 7 No Italian estimates seem to exist,8 but individual accounts suggest that the numbers were similar to those of the Austro-Hungarian side. Dozens of civilians were also killed by the avalanches, 9 which in several cases reached low-altitude settlements that were considered safe. Online resources and even books5 refer to 13 December 1916, for unknown reasons, as the “White Friday.” However, that day was actually a Wednesday.4 Therefore, we will not use this misleading expression.

Having occurred in the midst of a greater tragedy – the Great War – this event passed almost unnoticed at the time (see Box 3: The avalanche disaster in the newspapers). Nevertheless, it represents one of the worst weather-related disasters in European history in terms of loss of human life. It is the kind of event that can inform us about worst-case present and future extremes. With its well-documented impact, what is required is a detailed, quantitative understanding of the responsible atmospheric processes. Thus, the tragic event can become instructive.

Reconstructing past weather

Climate reconstructions have become an important tool in climate science. However, impacts on society often arise from a few distinct weather events whose relation to climate is not always straightforward. In these instances, weather reconstructions are required. For decades, past weather has been reconstructed by historians, often very precisely, but on a local scale and in a descriptive way. These weather reconstructions cannot be used for applications such as risk modeling. The currently available information on the weather in December 1916 is primarily based on qualitative descriptions from diaries, memoirs, and anecdotes passed down through generations. Some quantitative information can be recovered from weather stations of national weather services and be used to reconstruct such extreme events. However, these observations are usually limited to the bottom of valleys, where most of the population lives, and give little information on the peaks and slopes, where the event took place. In addition, the war disrupted many weather stations, particu-
In recent years, numerical techniques have been developed that allow detailed, quantitative weather reconstructions. These so-called reanalyses (see Box 4: What is a reanalysis?), which combine weather observations with a numerical weather prediction model, are standard data sets in atmospheric science. Until recently, they were restricted to reconstructions of past decades for which abundant observations from weather balloons are available. However, recent approaches require fewer observations. Air pressure at a few dozen locations already suffices to construct a complete three-dimensional picture of the atmosphere every six hours. This allows an extension of global data sets back to the start of the national meteorological networks in the 19th century. Today, several global data products can reproduce the meteorological situation in December 1916 (Fig. 2). However, they have a coarse spatial resolution that is insufficient for analyzing a regional event in a complex topography such as that of the Alps. A further step is dynamical downscaling (see Box 5: Dynamical downscaling) of the reanalysis, which is similar to operations by meteorologists to provide more accurate weather forecasts on a regional scale.

These numerical techniques do not replace, but rather complement the work of historians. Whereas reanalyses provide a dynamical interpretation for documented weather phenomena, historical documents provide impacts of the reanalyzed weather systems. This encourages interdisciplinary collaboration as is demonstrated by the December 1916 case.

Box 4: What is a reanalysis?

Meteorological observations provide information on the real atmosphere, but are temporally and spatially incomplete. Numerical weather prediction models provide a physically consistent and complete depiction of the atmosphere, but do not always agree with reality. By constantly correcting a model simulation toward the observations, reanalyses combine the advantages of both data sources. The corrections are not only applied at the observation locations, but the entire model state is corrected in a consistent way. Therefore, reanalyses are physically consistent, spatially complete, and encompass many variables (e.g., radiation) for which observations are not always available. However, they are not actual observations.

For the 1916 case, air pressure observations are used to correct the model state. Thus, the model is forced to generate realistic weather systems (with wind fields, temperature, moisture transport, etc.) so that they are consistent with the observed spatiotemporal air pressure variations.

Fig. 2: (left) Hand-drawn synoptic map of Europe for the morning of 13 Dec 1916, with black lines indicating sea level pressure (mmHg). Note that the map is based on asynchronous observations spread over a few hours. (right) Synoptic map at 0600 UTC 13 Dec 1916 from the European Centre for Medium-Range Weather Forecasts (ECMWF) 20th Century Reanalysis (ERA-20C). White contours indicate sea level pressure (mmHg for comparison), colored contours (green for zero, red for positive values, and blue for negative values) and vectors indicate temperature (°C) and wind at the isobaric level of 850 hPa (vector length is proportional to wind speed), respectively. Filled contours indicate geopotential height at 500 hPa (dam).
December 1916 reloaded

Contemporary meteorologists analyzed the synoptic configuration on 13 December 1916 and their hand-drawn maps can be found in meteorological bulletins and yearbooks (Fig. 2, left). These show a cyclone centered between Scotland and Denmark and a secondary low pressure system over southern France. Figure 2 (right) shows the situation as depicted by ERA-20C [a 100-yr reanalysis generated as part of the European Union-funded European Reanalysis of Global Climate Observations (ERA-CLIM) project16].

Although most of the large avalanches occurred on 13 December, this was a consequence of 9 days of relentless precipitation.4 Reanalyses can help us understand the natural factors that caused this extreme, high-impact event. Atmospheric circulation (Fig. 3) was held in the shape of a blocking configuration known as the East Atlantic/West Russia pattern, one of the leading modes of variability in the Eurasian sector19 (see Box 6: East Atlantic/West Russia pattern). This configuration usually brings wet spells to the southern Alps20 and higher-than-normal temperatures in the eastern Mediterranean21 (instrumental air temperature records from Greece indicate that December 1916 was the warmest December in the last 120 years22; see also Fig. 3). The consequences include positive water temperature anomalies in the Mediterranean, which is a main source of water vapor for the southern Alps and cause of extreme events.23

By downscaling ERA-20C to 2-km resolution (see Box 5: Dynamical downscaling), we find precipitation amounts on 13 December that locally exceed 200 mm in the Julian Alps (in agreement with the local maximum daily amounts observed in December 1916, although the exact date of these maxima is unavailable), with large spatial variations typical of a complex topography (Fig. 4a). This precipitation added critical weight to a snow pack that had already increased by up to 2.5 m over the previous days (Fig. 4b). Moreover, the rise in temperature brought rain up to 2000 m a.s.l., making the snowpack heavier. The combination of intense precipitation and high temperature raised Wörthersee, Carinthia’s largest lake, to its maximum observed lake level.24 On the front line, a major Italian offensive had to be delayed, because the troops deployed on the low-lying Karst Plateau were “drowning in mud,” as General Luigi Cadorna reported.5 The postponement lasted five months and enabled the struggling Austro-Hungarians to transfer critical reinforcements from the eastern front.

Contemporary meteorological observations that were not used in the reanalysis, in particular temperature, precipitation (mostly in Switzerland), and snow depth (in Austria-Hungary), are in good agreement with the simulated values (although there can be large deviations locally, especially for single days; see Fig. 4a). However, taken alone they would draw a rather incomplete picture of the event, because very few daily observations are available for the most affected areas. Taken together, the downscaled reanalysis and the observations provide a detailed, comprehensive view and allow a physically meaningful interpretation. Now that the main
ingredients of the weather situation (persistent blocking, warm Mediterranean Sea, moisture transport, and temperature increase) and of the societal vulnerability are identified, the behavior of these factors in a future climate or a future society can be studied.

An instrument with great potential

Reanalyses are currently available as continuous, 6-hourly data sets going back to the 1850s. Tests have been conducted for the years 1815–17 (encompassing the “year without a summer” that followed the Tambora eruption27) and there is even the potential to employ them for the 18th century in central Europe. However, they rely on pressure observations, which have traditionally been undervalued and hence have often not been digitized. This task must now be undertaken. In fact, reanalyses demonstrate how almost forgotten historical observations can once again become valuable, requiring scientists to go back to the archives – work that is best performed jointly by climatologists and historians.

Reanalyses are not always able to correctly reproduce real atmospheric circulation, particularly on a local scale. Therefore, they cannot be taken for truth. Rather, they represent a physically consistent, possible truth, which becomes meaningful when
analyzed together with documentary information on the real-world weather.

The results for December 1916 suggest that reliable high-resolution reconstructions can be achieved even with sparse surface data.

Fig. 4: Results from the dynamical downscaling of ERA-20C. (a) Total precipitation on 13 Dec 1916 (defined as the 24 hours until 0700 UTC 14 Dec 1916) with mean freezing level (m) indicated by the gray lines. Circles represent observations obtained from public datasets or digitized by the authors and red crosses locate documented major avalanches on 13 Dec 1916. (b) Change in snow depth between 5 and 13 Dec 1916 (at 0700 UTC) with circles representing observations from the network of the Austro-Hungarian hydrographic office. The military front line in 1916 is also shown (red dotted line). (c) Hourly air temperature between 1 and 15 Dec 1916 observed at Sonnblick Observatory (the highest manned weather station in the world at that time) compared with the simulation (temperature at station altitude was extrapolated from the two closest model levels). The position of Sonnblick Observatory is marked in (a) by the red triangle.

Combined with detailed historical analyses, they allow insight into an event that is not only historically relevant, but still very much present today. Such analyses result in precious information for numerous applications that include attribution; impact analysis; risk assessment; and societal resilience, responses, and perception.

Photo 5: Howitzer aiming at Val Rimbianco, Three Peaks, Dolomites.

Photo 6: Remnants of a trench at Monte Piana.
References

3 Handl L (1917) Von der Marmolata-Front II. Zeitschrift des Deutschen und Österreichischen Alpenvereins 48, 149–161.
13 Austrian Newspapers Online (ANNO), http://www.anno.orb.ac.at (accessed 31 Oct 2016), open access platform for digitized newspapers from the Austro-Hungarian Monarchy (currently 47 different daily newspapers available for December 1916).

Acknowledgements: ERA-20C was produced by the European Union–funded ERA-CLIM project, led by the ECMWF (Paul Poli and Dick Dee). Roberto Buizza and Patrick Laloyaux (ECMWF) have given helpful input to this brochure. We are also thankful to Ingeborg Auer for providing copies of the Austro-Hungarian snow bulletins and to Oswald Übergger, Nicola Fontana, and Tadej Koren for helping with documents of contemporary witnesses. We thank Leonie Villiger and Monika Wälti for their support in the production of this brochure. We also thank to Ingelborg Auer for providing copies of the Austro-Hungarian snow bulletins and to Oswald Übergger, Nicola Fontana, and Tadej Koren for helping with documents of contemporary witnesses. We thank Leonie Villiger and Monika Wälti for their support in the production of this brochure.

Photo credits: (Title) Fotolia / ID: #80793814, (1,2,3,5) Österreichische Nationalbibliothek, Fotosammlung des k.u.k. Kriegspressequartiers 1914–1918, (Inventorny numbers: WK1/ALB0070/01879, WK1/ALB0064/18019, WK1/ALB0070/01840 and WK1/ALB006/01668), (4) Schweizerisches Bundesarchiv, Signatur: CH-BAl RHE27#10000/21140494#3301*, Skispringen Darin: Batallion IV/93 Original: Negativ; Glasplatte; Silberbromid; 10x15cm, (6) Lorenzo Zardini – S.Jeep M.Piana

Layout: Alexander Hermann, Institute of Geography, University of Bern
Language editing: Monique Stewart © GEOGRAPHICA BERNENSIA 2016, Institute of Geography, University of Bern, Switzerland