Risk & Resilience Cluster

Addressing challenges of greater mountain regions from a multi‐dimensional and dynamic perspective

Übersarungen / Überschwemmung / Swiss losses from floods, landslides and debris flows
(Sources: Keystone/Alessandro della Valle, Aargau Department of Construction, Transport and the Environment)

Communities within greater mountain regions are facing increasingly severe risks, insecurities and crises in the context of extreme events and related disasters. Further they have to contend with current and future situations of high uncertainty. If such communities or regions experience high economic and social losses during a disaster, the question arises why there is so little progress in the ability to mitigate and adapt to natural hazards. The integrative cluster ‘Risk and Resilience addresses this question and contribute to two central aspects of research in disaster risk reduction:

  • Understanding the coupling between human and natural systems and the role of couplings preventing a hazard from becoming a disaster.
  • Improve the understanding of the temporal evolution of risk and resilience.

The overarching aim of this project is to combine knowledge on risk and community resilience existing in different disciplines and develop a new framework of coupled human‐landscape systems. Through interdisciplinary discussions and joint research we seek to increase the theoretical and empirical understanding of essential factors and interactive mechanisms existing within coupled human‐landscape systems in mountain areas. In doing this we will raise awareness on the perception of mountain hazards and their effects on people and provide new information for decision-making. These aims will be addressed by accomplishing the following objectives:

  1. Develop a conceptual model addressing the dynamics of risk and community resilience in greater mountain areas with emphasis on couplings between humans and the landscape.
  2. Implement the conceptual model as a fully coupled human-landscape computer model.
  3. Test the coupled model against social and physical empirical data on mountain hazards.
  4. Use the coupled model to investigate the role of climate and land use change on mountain hazard risk in Alpine communities.
  5. Use the coupled model to investigate socioeconomic dynamics in Alpine communities exposed to mountain hazards.
coupled human-landscape systems
(Sources: Google Earth, lampreysurveys.com, www.martinwalker.ch/)

The newly developed models of the ‘Risk and Resilience’ cluster will be applied in the different study sites using the empirical data available within the cluster and from related projects. Initially our coupled human-landscape model will be developed and tested at study sites in Switzerland, with specific focus on catchments and communities within Canton Bern. This includes sites in the mountainous region of the Bernese Oberland and the hilly and low mountainous countryside of the Bernese Mittelland. We also intend to apply our models to locations in the broader Alps region.

Study sites of the risk & resilience cluster
(Sources: www.myswitzerland.com, de.wikipedia.org, Adrian Moser)

The ‘Risk and Resilience’ cluster brings together the wealth of knowledge and expertise across the University of Bern Institute of Geography and aims to improve the understanding of risks and overcome the barriers to increasing disaster resilience in mountain communities. Our team is composed of experts in climate impact, geomorphology, hazard and risk, economic geography, cultural geography, and integrative geography.

Team

Our project is adopting a coupled modelling approach because various factors influence the location of human settlements and their exposure to mountain hazards. Society, politics, and technology can mitigate or exacerbate hazards and these actions strongly influence human settlement. Thus we intend to model the interplay between physical and socio-economic processes in Alpine communities over decadal time scales For example, our model scenarios will include short duration events (days) such as extreme precipitation that trigger debris flows or result in geomorphically effective floods. During these events simulated river channels will change laterally or become shallower and possibly increase flood risk for settlements. Likewise debris flows will mobilize large amounts of sediment that are destructive and result in high economic loses. Over longer time scales (years) we will model how communities at risk adapt and mitigate these mountain hazards. Our model will capture major shifts from agricultural to service‐based economies in mountain communities and stressors like economic crisis, depopulation, restrictions on construction, and climate change. Our models will contain linkages between actors in communities and determine which processes and adaptive strategies lead to more or less resilient communities. Examples of interdependencies include tourism needing farmers to preserve the countryside, and farmers needing tourism to compensate income deficits. Modelling these socioeconomic processes is important because collectively they have consequences for physical models. For example, decisions to maintain agricultural land cover may increase surface runoff, sediment transport, and flooding.

Modelling approach of the risk & resilience cluster
(Sources: www.eea.europa.eu, map.geo.admin.ch, Haisch, 2014)

Governance of Adaptation to Climate Change in Regions

The goal of this project is to gain in-depth knowledge about the governance of adaptation to climate change in a select number of case study regions and local communities (for more information see here).

Physical vulnerability to torrent processes: contributing factors and spatial analysis

This project will contribute to a better prediction of the risk caused by debris flow, hyperconcentrated flow and fluvial sediment transport and gaining insights into inherent uncertainties as well as reducing these uncertainties (for more information see here).

Analysing losses and risk hotspots based on insurance data

In Switzerland, there are many spatial data, which can be used to estimate directly or indirectly the size and/or probability of flood losses. This project examines the advantages and disadvantages of the different data sources (for more information see here).

Fuchs, Sven; Keiler, Margreth (2016). Vulnerabilität und Resilienz – zwei Komplementäre im Naturgefahrenmanagement? / Vulnerability and resilience – two complementary factors in natural hazard management? In: Fekete, Alexander; Hufschmidt, Gabriele (Hg.) Atlas der Verwundbarkeit und Resilienz - Pilotausgabe zu Deutschland, Österreich, Liechtenstein und Schweiz / Atlas of Vulnerability and Resilience - Pilot version for Germany, Austria, Liechtenstein and Switzerland (S. 50-53). Köln und Bonn: TH Köln & Unversität Bonn

Keiler, Margreth; Fischer, Benjamin (2016). Human induced risk dynamics - a quantitative analysis of debris flow risks in Sörenberg, Switzerland (1950 to 2014). In: 13th Congress Interpraevent 2016 (pp. 571-579). International Research Society Interpraevent

Keiler, Margreth; Fuchs, Sven (2016). Vulnerability and exposure to geomorphic hazards: Some insights form the European Alps. In: Meadows, Michael E.; Lin, Jiun-Chuan (Hg.) Geomorphology and Society. Advances in Geographical and Environmental Sciences (S. 165-180). Springer

Mayer, Heike; Meili, Rahel (2016). New Highlander Entrepreneurs in the Swiss Alps. Mountain Research and Development, 36(3), pp. 267-275. International Mountain Society 10.1659/MRD-JOURNAL-D-16-00040.1

Mayer, Heike; Habersetzer, Antoine Jean; Meili, Rahel (2016). Rural–Urban Linkages and Sustainable Regional Development: The Role of Entrepreneurs in Linking Peripheries and Centers. Sustainability, 8(8), p. 745. MDPI 10.3390/su8080745 

Wymann von Dach, S., Bachmann, F., Alcántara-Ayala, I., Fuchs, S., Keiler, M., Mishra, A. & Sötz, E. (Eds.) (2017): Safer lives and livelihoods in mountains: Making the Sendai Framework for Disaster Risk Reduction work for sustainable mountain development. Bern, Switzerland, Centre for Development and Environment (CDE), University of Bern, with Bern Open Publishing (BOP). 78 pp. (derzeit im Druck)

Zimmermann, Markus N.; Keiler, Margreth (2015). International Frameworks for Disaster Risk Reduction: Useful Guidance for Sustainable Mountain Development? Mountain Research and Development, 35(2), pp. 195-202. International Mountain Society 10.1659/mrd-journal-d-15-00006.1

Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Gomez, Juan Jose; Röthlisberger, Veronika Eva; Bernet, Daniel Benjamin; Rössler, Ole Kristen; Raible, Christoph; Keiler, Margreth; Martius, Olivia (2016). M-AARE - Coupling atmospheric, hydrological, hydrodynamic and damage models in the Aare river basin, Switzerland. In: 13th Congress Interpraevent 2016 (pp. 444-451). International Research Society Interpraevent

May 8th-May 11th, 2017: International Guest Lecture of the Risk & Resilience Cluster

Teaser

Prof. Susan Cutter (center), upon the invitation of the Risk and Resilience cluster, visited the Institute of Geography and delivered a positively received presentation on methods to measure community vulnerability and resilience. Additionally, Prof. Cutter met with members of the Risk and Resilience cluster to discuss developments in modelling socio-economic and physical dynamics in mountain communities. Prof. Cutter’s visit was capped off with a field excursion, led by members of the Geomorphrisk unit, to Swiss Alpine communities to meet stakeholders and understand the challenges these communities are facing. Prof. Cutter’s visit provided fruitful discussion and possibilities to extend the Risk and Resilience cluster’s outreach.

Masters Projects

Ongoing masters projects:

  • Simulating the effect of check dams on landscape evolution at centennial
  • time scales with the CEASER-Lisflood model, a case study at the Gürbe
  • Sediment yield estimation on a catchment scale in data-scarce regions  Rasht valley, Tajikistan (GeomorphRisk/CDE)
  • Documentation and analysis of the Barsem debris flows, Tajikistan
  • Unternehmerinnen im Kontext des ländlichen Raums: Der Einfluss der regionalen Naturpärke auf die Unternehmerinnen und ihre Lebenswelt
  • Raumpioniere in Gemeinden des Schweizer Berggebiets
  • Entlebuch und Postwachstum

Masters projects on offer:

Research topics for a Master’s thesis with the Geomorphology, Natural Hazard and Risk Research group are assigned based on current research. If you are interested in one of these topics, please contact the contact person providing the following information:

  • short letter of motivation about the chosen topic
  • short CV about your studies, formations and experiences
  • list with completed courses (year, university, institute) with relation to the topic

We will be pleased to answer further questions by email or in a personal meeting.

Masters topics include:

  • Multi‐hazards and cascading events – Analysing the crucial interactions
  • Landslide model for Switzerland (Climate impact/GeomorphRisk)
  • Potenzialarme Räume (Schrumpfung) in der Schweiz
  • Baubranche im Schweizer Berggebiet: Branchenportrait, Rolle von Wachstum für die Branche und Wachstumssituation
  • Diverse topics to Post-growth economy (Postwachstumsökonomie), Small and medium-sized towns, rural regions, mountain areas, etc.
  • Modelling the effect of climate change on debris flows in Swiss catchments

    Debris flows are fast moving mixture of water and solid material that can cause extensive economic damage. Computer models have offered the possibility to map debris flows using approaches with varying amounts of physical rigour, complexity, and computational efficiency. Landscape evolution models (LEMs) simulate erosion and deposition in river catchments and reaches over long time scales (100 yrs), but few LEMs include debris flow processes because of increased computational overhead, mismatches in spatial scale, and uncertainty in parameters. Without the inclusion of debris flows in LEMs it remains difficult to investigate landscape evolution in steep mountain catchments. To address this need researchers at the British Geological Survey have developed a human-timescale (annual-century) LEM (CAESAR-Lisflood-DESC) that includes debris flow processes (SCIDDICA). Within this master project the student will use CAESAR-Lisflood-DESC to investigate long term debris flow magnitude and frequency within Swiss catchments under various climate forcings. This provides an opportunity to determine if climate change will have a large effect on debris flows. The student, in collaboration with researchers at the University of Bern and the British Geological Survey will develop debris flow models for a number of sites in Switzerland. The student will receive training in numerical modelling, model calibration methods, GIS and automated processing of large datasets. These skills will equip the student for both academic or industry careers. The preferred candidate should be interested in computer modelling, numerically inclined, have basic programming skills, ability to perform spatial analysis, and willingness to communicate in English. Contact: Jorge Ramirez (jorge.ramirez@giub.unibe.ch)

Teaching

In relation with the risk and resilience cluster several courses are offered (see below). More Information about these courses are available on the Core Teaching System (CTS). Coursework related to the cluster includes:

  • 26402-FS2016: Social and economic development dynamics beyond core regions (Economic Geography)
  • 10917-FS2016: Resilience in Sustainable Land Management and Land Systems
  • 101375-HS2016: Seminar in Geomorphology: Coupled human-landscape systems
  • 423825-HS2016: Challenges in Geography