A coupled human and landscape conceptual model of risk and resilience in mountain communities

Jorge Ramirez, Tina Haisch, Olivia Martius, Heike Mayer, Chinwe Ifejika Speranza, and Margreth Keiler

UNIVERSITÄT BERN Risk and Resilience Cluster: www.risk-resilience.giub.unibe.ch

Background

Background > Approach > Models > Key Linkages > Conclusion

Mountain communities are exposed to physical and socio-economic shocks

How resilient are mountain communities to these shocks?

Socio-economic shocks

Sources: planat.ch, air-worldwide.com, myswitzerland.com, swissinfo.ch

Background

Background > Approach > Models > Key Linkages > Conclusion

Mountain community economic response to physical and socio-economic shocks

Background

Background > Approach > Models > Key Linkages > Conclusion

What magnitude and frequency of shocks are buffered by mountain communities? Do socio-economic or physical shocks have a greater affect on mountain communities?

Modelling approach

- Spatial simulation of landscape and mountain community processes
- Fully coupled model
 - Landscape evolution model (LEM) that replicates floods and debris flows
 - System dynamics model that replicates socio-economic interactions
- Develop a generic model that is loosely based on Swiss mountain communities, but is transferable to other mountainous regions
 - Data availability
 - Model calibration possible with historic data

Mountain communities

Background > Approach > Models > Key Linkages > Conclusion

Mountain Community	Туре	Geographic Size	Income Level	Community Moral	Demand for Local Goods	Vulnerability	Resilience	Sustainability
Downward spiral	Peripheral	Small	Low	Low	Low	High	Low	Low
Stagnation	Semi-urban	Medium	Medium	Medium	Medium	High	Medium	Medium
Upward spiral	Urban	Large	High	High	High	High	High	High

Downward Spiral

Stagnation

Upward Spiral

Modelling scales

Background > Approach > Models > Key Linkages > Conclusion

Mountain catchment with:

- **Geographic scale:** 20 m resolution topography
 - Representative alpine catchment
 - Area: 450 km²
 - Elevations: 500 3700 m
 - Steep slopes and isolated valleys
- Temporal scale: Present day to 2060

Landscape model

7

- Representation of landcover & 3 community types
- Model drivers include rainfall, snowfall, & snow melt

Socio-economic model

- Model drivers are financial means, population dynamics, local employment,
- Additionally important are accessibility and attractiveness of the community

Linkage: Damage and Loss

Linkage: Damage and Loss

Background > Approach > Models > Key Linkages > Conclusion

Intensity of rainfall most important in movement of sediment and causing floods

10

Linkage: Damage and Loss

Linkage: Mitigation

Linkage: Mitigation

Background > Approach > Models > Key Linkages > Conclusion

River Engineering:
Flooding → Levees, Dams
Debris Flows → Check dams, retention basins

Levees

Check dams

Linkage: Landcover

Conclusion

- Our modelling approach will be able to determine the resilience of different mountain communities to **combined physical and socio-economic shocks**
- We consider **linkages** between both systems
- The conceptual model is **generic** and can be applied to most Alpine mountain communities
- Future work will focus on the development of the conceptual model using existing computer models